Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-Methyl-6-nitro-1H-benzimidazole

Jan Lokaj, ${ }^{\mathbf{a}}$ Viktor Kettmann, ${ }^{\mathbf{b}}{ }^{*}$ Tomáš Solčan ${ }^{\mathbf{a}}$ and Svetozar Katuščák ${ }^{\text {a }}$

${ }^{\mathrm{a}}$ Faculty of Food and Chemical Technology, Slovak Technical University, Radlinskeho 9, SK-81237 Bratislava, Slovak Republic, and ${ }^{\mathbf{b}}$ Faculty of Pharmacy, Comenius University, Odbojarov 10, SK-83232 Bratislava, Slovak Republic Correspondence e-mail: kettmann@fpharm.uniba.sk

Received 20 February 2008; accepted 3 March 2008

Key indicators: single-crystal X-ray study; $T=296$ K; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.046 ; w R$ factor $=0.130 ;$ data-to-parameter ratio $=19.5$.

The title compound, $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$, a potential antitumour drug and an antioxidant agent, was studied in order to give more insight into structure-function relationships. The 1-methylbenzimidazole unit of the molecule was found to be exactly planar and the nitro group is inclined at an angle of 10.4 (2) ${ }^{\circ}$ to the plane of the heterocycle. The bond lengths in the present derivative were analyzed in details and compared with those of the parent unsubstituted analogues in the Cambridge Structural Database. The results have shown that the additional nitro group is not involved in conjugation with the adjacent π-system and hence has no effect on the charge distribution of the heterocyclic ring.

Related literature

For related literature on related crystal structures, see for example: Türktekin et al., (2004) as retrieved from the Cambridge Structural Database (Version of 2007; Allen, 2002). For the synthesis, see: Ellis \& Jones (1974). For the length of the pure $\mathrm{C} s p^{2}-\mathrm{N} s p^{2}$ single bond, see: Adler et al. (1976). For related literature on biological aspects of the benzimidazole derivatives in general, see: Alpan et al. (2007); Kettmann et al. (2004); Le et al. (2004); Nguyen et al. (2004); Statkova-Abeghe et al. (2005). Antioxidant properties of the compound are discussed by Hanus et al. (2004); Katušćák (2003).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=177.17$
Orthorhombic, Pbca
$a=12.852$ (3) \AA
$b=7.043$ (2) A
$c=17.690(4) \AA$

Data collection

Siemens P4 diffractometer
Absorption correction: none 3027 measured reflections 2325 independent reflections 1493 reflections with $I>2 \sigma(I)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.130$
$S=0.96$
2325 reflections

$$
\begin{aligned}
& V=1601.2(7) \AA^{3} \\
& Z=8 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=296(2) \mathrm{K} \\
& 0.30 \times 0.20 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

$R_{\text {int }}=0.035$
3 standard reflections every 97 reflections intensity decay: none

Table 1
Selected bond lengths (\AA).

N1-C2	$1.3571(17)$	C5-C6	$1.4095(19)$
N1-C8	$1.3817(17)$	C6-C7	$1.3840(19)$
C2-N3	$1.3107(19)$	C6-N4	$1.4563(18)$
N3-C9	$1.3803(18)$	C7-C8	$1.3775(18)$
C4-C5	$1.366(2)$	C8-C9	$1.4104(17)$
C4-C9	$1.4001(19)$		

Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

This work was supported by the Grant Agency of the Slovak Republic (project Nos. 1/4298/07 and 1/0225/08) as well as by the Science and Technology Assistance Agency (APVV-20-007304). The authors also thank the Ministry of Education of the Slovak Republic (contract No. 2003SP200280301).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2091).

References

Adler, R. W., Goode, N. C., King, T. S., Mellor, J. M. \& Miller, B. W. (1976). J. Chem. Soc. Chem. Commun. pp. 173-174.
Allen, F. H. (2002). Acta Cryst, B58, 380-388.
Alpan, A. S., Gunesi, H. S. \& Topcu, Z. (2007). Acta Biochim. Pol. 54, 561-565.
Ellis, G. P. \& Jones, R. T. (1974). J. Chem. Soc. Perkin Trans. 1, pp. 903-909.
Hanus, J., Katuščák, S., Katuščák, D., Bukovský, V. \& Rychlý, J. (2004). Proceedings of the International Conference on Durability of Paper and Writing, Ljubljana, Slovenia, p. 86.
Katušćák, S. (2003). Chemical Technology of Wood, Pulp and Paper in Culture, Education and Industry, edited by G. Baudin, J. Fellegi, B. Gollerstedt, S. Katuščák, I. Pikulik \& J. Paris, pp. 27-34. Bratislava: Slovak Technical University.
Kettmann, V., Koštálová, D. \& Holtje, H.-D. (2004). J. Comput. Aided Mol. Des. 18, 785-797.
Le, H. T., Lemaire, I. B., Gilbert, A. K., Jolicoeur, F., Yang, L., Leduc, N. \& Lemaire, S. (2004). J. Pharmacol. Exp. Ther. 309, 146-155.

organic compounds

Nguyen, D. M., Schrump, W. D., Chen, G. A., Tsal, W., Nguyen, P., Trepel, J. B. \& Schrump, D. S. (2004). Clin. Cancer Res. 10,1813-1825.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1991). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Statkova-Abeghe, S., Ivanova, I., Daskalova, S. \& Dzhambazov, B. (2005). Med. Chem. Res. 14, 429-439
Türktekin, S., Akkurt, M., Şireci, N., Küçükbay, H. \& Büyükgüngör, O. (2004). Acta Cryst. E60, o817-o819.

supplementary materials

1-Methyl-6-nitro- $\mathbf{1 H}$-benzimidazole

J. Lokaj, V. Kettmann, T. Solcan and S. Katuscák

Comment

Benzimidazole derivatives are known to possess a variety of biological properties (Le et al., 2004), the anti-cancer activity being one of the most important (Nguyen et al., 2004). Recently, it has been reported that the cytotoxic activity of 1 H -benzimidazoles is related to inhibition of the DNA-topoisomerase binary complex and is potentiated by introduction to the 6-position of a small substituent containing an oxygen atom able to accept a hydrogen bond (e.g. nitro, acetyl, amide) (Alpan et al., 2007; Statkova-Abeghe et al., 2005). It was, however, unclear whether the influence of the substituents reflects their effect on the charge distribution of the heterocycle or results from interaction of the substituents with additional DNA or enzyme functionalities. Consequently, we prepared a series of 6 -substituted 1-methylbenzimidazoles and determined and compared their molecular and electronic structures by using theoretical and experimental techniques. In this communication we report the crystal structure of the 6-nitro derivative, (I). Another point of interest in (I) stems from its use in paper processing as an antioxidant agent (Katušćák, 2003; Hanus et al., 2004), a property which is also dependent on the molecular and electronic structures of the compound.

As expected, the 1-methylbenzimidazole substructure is planar to within experimental error and the nitro group is rotated by $10.4(2)^{\circ}$ from the plane of the heterocycle (Fig.1).

As mentioned above, the main purpose of this work was to compare precise molecular dimensions in the present derivative, (I), with those of the unsubstituted 1-methylbenzimidazole. As the latter compound has no entry in the Cambridge Structural Database (CSD, Version of 2007; Allen \& Kennard, 1983), the CSD was searched for compounds possessing the benzimidazole nucleus and just 1 -substituent with methylene group in the α-position; 42 such compounds [hereafter (II)] were found. The comparison have shown that the corresponding bond lengths in the benzimidazole heterocycle in (I) and in the molecules of (II) are equal within the limits of experimental error. This, along with the single-bond character of C6-N4 (Adler et al., 1976) indicates that the nitro group is deconjugated with the benzimidazole ring. This implies that the large difference in cytotoxic activities between (I) and (II) lies in the interaction of the 6 -substituent with additional DNA intercalation component or enzyme amino acid residues which surrounds the intercalation site (Kettmann et al., 2004). These results will serve as a basis for subsequent molecular-modelling studies of the DNA-enzyme-ligand interactions.

Experimental

The synthesis of the title compound, (I), was described earlier (Ellis \& Jones, 1974). In short, a solution of formaldehyde $(4 \mathrm{~g}, 0.133 \mathrm{~mol})$ in absolute ethanol $(40 \mathrm{ml})$ was heated under reflux for 30 min with commercially available 4-nitro-1,2phenylenediamine ($7.1 \mathrm{~g}, 0.046 \mathrm{~mol}$) and concentrated hydrochloric acid (3 ml). On basification with ammonia, (I) was obtained as yellow crystals (25% yield; m.p. $454-456 \mathrm{~K}$).

supplementary materials

Refinement

H atoms were visible in difference maps but were placed in calculated positions and were refined isotropic ($U_{\text {iso }}$ of the H atoms were set to 1.2 (1.5 for the methyl H atoms) times $U_{\text {eq }}$ of the parent atom) using a riding model with $\mathrm{C}-\mathrm{H}=0.93$ $\AA\left(\mathrm{CH}_{\text {arom }}\right)$ and $0.96 \AA\left(\mathrm{CH}_{3}\right)$.

Figures

Fig. 1. Displacement ellipsoid plot of the title molecule with the labelling scheme for the nonH atoms, which are drawn as 35% probability ellipsoids.

1-Methyl-6-nitro-1H-benzimidazole

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=177.17$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=12.852$ (3) \AA
$b=7.043$ (2) \AA
$c=17.690(4) \AA$
$V=1601.2(7) \AA^{3}$
$Z=8$
$F_{000}=736$
$D_{\mathrm{x}}=1.470 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 455 K
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 20 reflections
$\theta=7-19^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Prism, yellow
$0.30 \times 0.20 \times 0.15 \mathrm{~mm}$

Data collection

Siemens P4

diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=296(2) \mathrm{K}$
$\omega / 2 \theta$ scans
Absorption correction: none
3027 measured reflections
2325 independent reflections
1493 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\mathrm{int}}=0.035 \\
& \theta_{\max }=30.0^{\circ} \\
& \theta_{\min }=2.3^{\circ} \\
& h=-1 \rightarrow 18 \\
& k=-1 \rightarrow 9 \\
& l=-24 \rightarrow 1 \\
& 3 \text { standard reflections } \\
& \text { every } 97 \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.130$
$S=0.96$
2325 reflections
119 parameters

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0722 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\max }=0.18$ e \AA^{-3}
$\Delta \rho_{\min }=-0.15$ e \AA^{-3}

Primary atom site location: structure-invariant direct methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
N1	$0.42194(9)$	$0.26257(16)$	$0.47003(6)$	$0.0416(3)$
C2	$0.52515(10)$	$0.2941(2)$	$0.45973(9)$	$0.0497(4)$
H2	0.5525	0.3360	0.4140	0.060^{*}
N3	$0.58338(9)$	$0.26080(19)$	$0.51910(7)$	$0.0532(3)$
C4	$0.53023(11)$	$0.1419(2)$	$0.64798(8)$	$0.0553(4)$
H4	0.5968	0.1419	0.6686	0.066^{*}
C5	$0.44659(12)$	$0.0845(2)$	$0.68983(8)$	$0.0544(4)$
H5	0.4561	0.0432	0.7393	0.065^{*}
C6	$0.34599(10)$	$0.08772(19)$	$0.65813(7)$	$0.0425(3)$
C7	$0.32568(9)$	$0.14664(19)$	$0.58497(7)$	$0.0390(3)$
H7	0.2587	0.1496	0.5650	0.047^{*}
C8	$0.41167(10)$	$0.20061(17)$	$0.54376(7)$	$0.0374(3)$
C9	$0.51357(10)$	$0.20067(19)$	$0.57335(8)$	$0.0444(3)$
C10	$0.33948(11)$	$0.2912(3)$	$0.41540(9)$	$0.0555(4)$
H10A	0.3428	0.4185	0.3962	0.083^{*}
H10B	0.2733	0.2711	0.4393	0.083^{*}
H10C	0.3476	0.2029	0.3745	0.083^{*}
N4	$0.25815(11)$	$0.03037(18)$	$0.70486(7)$	$0.0499(3)$

O1	$0.16986(9)$	$0.0586(2)$	$0.68211(6)$	$0.0653(3)$
O2	$0.27589(11)$	$-0.0462(2)$	$0.76606(6)$	$0.0721(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N 1	$0.0348(5)$	$0.0474(6)$	$0.0425(6)$	$-0.0030(4)$	$-0.0002(4)$	$0.0008(5)$
C 2	$0.0376(7)$	$0.0532(8)$	$0.0583(8)$	$-0.0041(6)$	$0.0085(6)$	$-0.0036(7)$
N 3	$0.0334(6)$	$0.0599(8)$	$0.0663(8)$	$-0.0019(5)$	$0.0008(5)$	$-0.0071(6)$
C 4	$0.0428(7)$	$0.0662(9)$	$0.0570(8)$	$0.0084(7)$	$-0.0178(6)$	$-0.0072(8)$
C 5	$0.0592(9)$	$0.0607(9)$	$0.0434(7)$	$0.0103(7)$	$-0.0138(7)$	$-0.0029(7)$
C 6	$0.0460(7)$	$0.0436(7)$	$0.0379(6)$	$0.0027(6)$	$-0.0017(5)$	$-0.0048(5)$
C7	$0.0350(6)$	$0.0417(6)$	$0.0404(6)$	$0.0007(5)$	$-0.0039(5)$	$-0.0044(6)$
C8	$0.0349(6)$	$0.0376(6)$	$0.0398(6)$	$0.0011(5)$	$-0.0036(5)$	$-0.0046(5)$
C9	$0.0348(6)$	$0.0450(7)$	$0.0535(8)$	$0.0029(5)$	$-0.0055(6)$	$-0.0089(6)$
C10	$0.0477(8)$	$0.0748(10)$	$0.0441(7)$	$-0.0036(7)$	$-0.0071(6)$	$0.0084(7)$
N4	$0.0605(8)$	$0.0515(7)$	$0.0377(6)$	$-0.0001(6)$	$0.0029(5)$	$-0.0052(5)$
O1	$0.0503(6)$	$0.0928(9)$	$0.0527(6)$	$-0.0051(6)$	$0.0055(5)$	$0.0053(6)$
O2	$0.0891(10)$	$0.0851(9)$	$0.0420(6)$	$0.0051(7)$	$0.0043(6)$	$0.0149(6)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{N} 1-\mathrm{C} 2$	$1.3571(17)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.3817(17)$
$\mathrm{N} 1-\mathrm{C} 10$	$1.4483(18)$
$\mathrm{C} 2-\mathrm{N} 3$	$1.3107(19)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{~N} 3-\mathrm{C} 9$	$1.3803(18)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.366(2)$
$\mathrm{C} 4-\mathrm{C} 9$	$1.4001(19)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 5-\mathrm{C} 6$	$1.4095(19)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 8$	$105.76(11)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 10$	$127.08(12)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 10$	$127.15(11)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{N} 1$	$114.93(13)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{H} 2$	122.5
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{H} 2$	122.5
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 9$	$103.93(12)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9$	$118.57(13)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.7
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{H} 4$	120.7
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.08(13)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.0
C6-C5-H5	120.0
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$123.36(13)$
C7-C6-N4	$117.89(12)$

C6-C7	1.3840 (19)
C6-N4	1.4563 (18)
C7- C 8	1.3775 (18)
C7-H7	0.9300
C8-C9	1.4104 (17)
C10-H10A	0.9600
C10-H10B	0.9600
C10-H10C	0.9600
N4-O1	1.2202 (16)
N4-O2	1.2308 (16)
C8-C7-H7	122.4
C6-C7-H7	122.4
C7-C8-N1	131.56 (12)
C7-C8-C9	123.28 (12)
N1-C8-C9	105.17 (11)
N3-C9-C4	130.31 (13)
N3-C9-C8	110.22 (12)
C4-C9-C8	119.46 (13)
N1-C10-H10A	109.5
N1-C10-H10B	109.5
H10A-C10-H10B	109.5
$\mathrm{N} 1-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
H10A-C10-H10C	109.5
H10B-C10-H10C	109.5
$\mathrm{O} 1-\mathrm{N} 4-\mathrm{O} 2$	122.26 (14)

sup-4

supplementary materials

$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 4$	$118.74(12)$	$\mathrm{O} 1-\mathrm{N} 4-\mathrm{C} 6$	$119.23(12)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$115.24(11)$	$\mathrm{O} 2-\mathrm{N} 4-\mathrm{C} 6$	$118.50(13)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3$	$-0.55(16)$	$\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$-178.72(13)$
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3$	$178.49(14)$	$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 9-\mathrm{C} 4$	$178.82(15)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 9$	$0.52(16)$	$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 9-\mathrm{C} 8$	$-0.29(15)$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.9(2)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9-\mathrm{N} 3$	$-178.51(14)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$0.2(2)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$0.5(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 4$	$-178.40(14)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 3$	$179.82(12)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$0.9(2)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 3$	$-0.02(15)$
$\mathrm{N} 4-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$179.47(11)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4$	$0.6(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1$	$178.54(13)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4$	$-179.25(12)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-1.26(19)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 4-\mathrm{O} 1$	$-9.28(19)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$	$-179.50(14)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 4-\mathrm{O} 1$	$169.38(13)$
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$	$1.5(2)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 4-\mathrm{O} 2$	$170.32(13)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$0.32(14)$	$-11.02(19)$	

supplementary materials

Fig. 1

